Researchers Write Protein Nanoarrays Using A Fountain Pen And Electric Fields

Researchers Write Protein Nanoarrays Using A Fountain Pen And Electric Fields

ScienceDaily (Oct. 13, 2008) — Nanotechnology offers unique opportunities to advance the life sciences by facilitating the delivery, manipulation and observation of biological materials with unprecedented resolution. The ability to pattern nanoscale arrays of biological material assists studies of genomics, proteomics and cell adhesion, and may be applied to achieve increased sensitivity in drug screening and disease detection, even when sample volumes are severely limited.

See also:
- Matter & Energy
 - Organic Chemistry
 - Biochemistry
 - Nanotechnology
 - Civil Engineering
 - Energy Technology
 - Materials Science
- Reference
 - Nanorobots
 - Nanomedicine
 - Materials science
 - Nanowires

Unfortunately, most tools capable of patterning with such tiny resolution were developed for the silicon microelectronics industry and cannot be used for soft and relatively sensitive biomaterials such as DNA and proteins.

Now a team of researchers at Northwestern University has demonstrated the ability to rapidly write nanoscale protein arrays using a tool they call the nanofountain probe (NFP).

“The NFP works much like a fountain pen, only on a much smaller scale, and in this case, the ink is the protein solution,” said Horacio Espinosa, head of the research team and professor of mechanical engineering in the McCormick School of Engineering and Applied Science at Northwestern.

The results, which will be published online the week of Oct. 13 in the Proceedings of the National Academy of Sciences (PNAS), include demonstrations of sub-100-nanometer protein dots and sub-200-nanometer line arrays written using the NFP at rates as high as 80 microns/second.

Each nanofountain probe chip has a set of ink reservoirs that hold the solution to be patterned. Like a fountain pen, the ink is transported to sharp writing probes through a series of microchannels and deposited on the substrate in liquid form.

“This is important for a number of reasons,” said Owen Loh, a graduate student at Northwestern who co-authored the paper with fellow student Andrea Ho. “By maintaining the sensitive proteins in a liquid buffer, their biological function is less likely to be affected. This also means we can write for extended periods over large areas without repulsing the ink.”

Earlier demonstrations of the NFP by the Northwestern team included directly writing organic and inorganic materials on a number of different substrates. These included suspensions of gold nanoparticles, thiols and DNA patterned on metallic- and silicon-based substrates.

In the case of protein deposition, the team found that by applying an electrical field between the nanofountain probe and substrate, they could control the transport of protein to the substrate. Without the use of electrical fields, protein deposition was relatively slow and sporadic. However, with proper electrical bias, protein dot and line arrays could be deposited at extremely high rates.

“The use of electrical fields allows an additional degree of control,” Espinosa said. “We were able to create dot and line arrays with a combination of speed and resolution not possible using other techniques.”

Positively charged proteins can be maintained inside the fountain probe by applying a negative potential to the NFP reservoirs with respect to a substrate. Reversing the applied potential then allows protein molecules to be deposited at a desired site.

To maximize the patterning resolution and efficiency, the team relied on computational models of the deposition process. By modeling the ink flow within the probe tip, we were able to get a sense of what conditions would yield optimal patterns,” says Joe Rim, a postdoctoral researcher at Northwestern.

Related Stories

Innovative Fountain Pen Writes On The Nanoscale (Apr. 27, 2005) — The first practical fountain pen was invented in 1884 by Lewis Waterman who solved the problem of ink leaks by inventing the capillary feed which produced even ink flow. Now fountain pen history is … read more

Researchers Directly Deposit Gold Nanoparticles In Suspension (Aug. 10, 2007) — Researchers have demonstrated the ability of a third-generation nanofountain probe to directly deposit gold nanoparticles, 15 nanometers in diameter, onto silicon substrates. The direct-writing method … read more

Scientists Develop Protein Nanofibers For Biological Detection (Feb. 11, 2002) — Scientists at Northwestern University have developed a new detection technology on the nanoscale that could lead to the new generation of proteomic arrays and new methods for diagnosing … read more

New Process Makes Nanofibers In Complex Shapes And Unlimited Nanonewtions (Feb. 6, 2008) — The continuous fabrication of complex, 3-D nanoscale structures and the ability to grow individual nanofibers of unlimited length are now possible with a new process. Based on the rapid evaporation of … read more

Problems crop up on Hubble Space Telescope

White space backers see new devices in a year

“Walking fish” reveals fresh evolutionary insights

Device helps monkeys move paralyzed wrists

Study finds brain chemical linked to grief

more science news

In Other News ...

U.S. and EU to meet on financial crisis

Russia not yet convinced should help Iceland out

U.S. says North Korea stuck to nuclear promises

Housing market and consumers on the ropes

Housing market and consumers on the ropes

Global stocks rally in volatile trade, money rates ease

Turkish court to hear high-profile coup case

South Afghanistan attack kills 17 civilians

Breaking News ...

... from NewsDaily.com

Just In:

Emotion And Scents Create Lasting Memories

Smart Pens Help Blind See

Psychologists researchers and industrial technologies use a pen computer to assist visually impaired students to learn science and math.

The pen … > full story

Optical Scientists, Psychiatrists Develop Minimally Invasive Eye Test for Alzheimer’s

Food Chemist Develops Protein-Based Batter for Healthier Frying

Gastroenterologists Use Optics To Detect Early Stages Of Colon Cancer

more science videos

Researchers Write Protein Nanoarrays Using A Fountain Pen And Electric Fields
"We are very excited by these results," said Espinosa. "This technique is very broadly applicable, and we are pursuing it on a number of fronts." These include single-cell biological studies and direct-write fabrication of large-scale arrays of nanoelectrical and nanoelectromechanical devices.

"The fact that we can batch fabricate large arrays of these fountain probes means we can directly write large numbers of features in parallel," added Espinosa. "The demonstration of rapid protein deposition rates further supports our efforts in producing a large-scale nanomanufacturing tool."

The paper in the Proceedings of the National Academy of Sciences was authored by Loh, Ho, Rim, Patankar, Kohli and Espinosa.

Adapted from materials provided by Northwestern University, via EurekAlert!, a service of AAAS.

Need to cite this story in your essay, paper, or report? Use one of the following formats:

APA

MLA

About This Site | Editorial Staff | Awards & Reviews | Contribute News | Advertise With Us | Privacy Policy | Terms of Use
Copyright © 1995-2008 ScienceDaily LLC — All rights reserved — Contact: editor@sciencedaily.com