New nanocrystalline diamond probes overcome wear

Researchers at the McCormick School of Engineering and Applied Science at Northwestern University have developed, characterised, and modeled a new kind of probe used in atomic force microscopy (AFM), which images, measures, and manipulates matter at the nanoscale.

Using diamond, researchers made a much more durable probe than the commercially available silicon nitride probes, which are typically used in AFM to gather information from a material, but can wear down after several uses.

Horacio Espinosa, James and Nancy Farley Professor of Manufacturing and Entrepreneurship, and his graduate student Ravi Agrawal have shown that diamond atomic force microscopy probes are 10 times more durable than silicon nitride probes.

Their results were recently published in the Journal of Applied Physics. 'It is well-known that diamond should perform much better than other probe materials,' says Espinosa. 'However, rigorous quantification of wear and the development of models with predictive capabilities have remained elusive. It was exciting to discover that diamond probes are an order of magnitude more wear resistant than silicon nitride probes and that a single model can predict wear for both materials.'

In the study, wear tests were performed using AFM probes made from different materials - silicon nitride, ultrananocrystalline diamond (UNCD) and nitrogen-doped UNCD - by scanning them across a hard UNCD substrate. Argonne National Laboratory, where UNCD was originally invented, also supported this work by providing nitrogen-doped UNCD. Probes were made in house and also provided by Advanced Diamond Technologies, Inc.

Horacio Espinosa, James and Nancy Farley Professor of Manufacturing and Entrepreneurship, and his graduate student Ravi Agrawal have shown that diamond atomic force microscopy probes are 10 times more durable than silicon nitride probes.
In addition to characterising the probe, researchers also created a model that can predict how a probe tip will wear.

'The development of a general model with predictive capabilities is a major milestone. This effort also provided insight into how the interfacial adhesion between the probe and substrate relates to the wear resistance of AFM probes,' says Agrawal.

Neil Kane, president of ADT, said, 'The results reported in this investigation are impressive in showing the improvement in wear resistance of diamond probes. This work in part inspired the development of our commercially available NaDiaProbes(R).'

Source: Northwestern University

Leave a comment

The details you provide on this page [e-mail address] will not be used to send unsolicited e-mail, and will not be supplied to a third party! Please note that we can not promise to give everyone a response. Comments are FULLY MODERATED. Once approved they will be posted within 24 hours.

Your name:

Your e-mail:

Comment:

SEND

More on Science Centric News | Technology

Ivory tower needs to adapt to online media landscape, scholar says — 11 April 2009
Universities need to embrace new online media, social networks and a culture of 'openness' as part of their pedagogy, or they risk becoming seen as anachronisms in today's hyper-connected... — full story

Sensitive robots — 6 April 2009
Robots are commonplace in production halls, but are only allowed to operate in protected areas so as not to endanger humans with their movements. A new cost-efficient, robust force... — full story

Fitter frames: Nanotubes boost structural integrity of composites — 27 March 2009
A new research discovery at Rensselaer Polytechnic Institute could lead to tougher, more durable composite frames for aircraft, watercraft, and automobiles. Epoxy composites are increasingly... — full story

3-D surface treatment boosts solar cell efficiency — 25 March 2009
Using two different types of chemical etching to create features at both the micron...
silicon nanowires paves way for nanodevices
New 'finFETS' promising for smaller
transistors, more powerful chips
Caltech scientists develop DNA origami
nanoscale breadboards for carbon nanotube
circuits
More Technology...