3-D view of 1-D nanostructures

January 6, 2012

Semiconductor gallium nitride nanowires show great promise in the next generation of nano- and optoelectronic systems. Recently, researchers at the McCormick School of Engineering have found new piezoelectric properties of the nanowires that could make them more useful in self-powered nanodevices.

Just 100 nanometers in diameter, nanowires are often considered one-dimensional. But researchers at Northwestern University have recently reported that individual gallium nitride nanowires show strong piezoelectricity – a type of charge-generation caused by mechanical stress – in three dimensions. The findings, led by Horacio Espinosa, James N. and Nancy J. Farley Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science, were published online Dec. 22 in Nano Letters.

Gallium nitride (GaN) is among the most technologically relevant semiconducting materials and is ubiquitous today in optoelectronic elements such as blue lasers (hence the blue-ray disc) and light-emitting-diodes (LEDs). More recently, nanogenerators based on GaN nanowires were demonstrated capable of converting mechanical energy (such as biomechanical motion) to electrical energy.

"Although nanowires are one-dimensional nanostructures, some properties – such as piezoelectricity, the linear form of electro-mechanical coupling – are three-dimensional in nature," Espinosa said. "We thought these nanowires should show piezoelectricity in 3D, and aimed at obtaining all the piezoelectric constants for individual nanowires, similar to the bulk material."

The findings revealed that individual GaN nanowires as small as 60 nanometers show piezoelectric behavior in 3D up to six times of their bulk counterpart. Since the generated charge scales linearly with piezoelectric constants, this finding implies that nanowires are up to six times more efficient in converting mechanical to electrical energy.

To obtain the measurements, researchers applied an electric field in different directions in single nanowire and measured small displacements, often in pico-meter (10-12 m) range. The group devised a method based on scanning probe microscopy leveraging high-precision displacement measurement capability of an atomic force microscope.

"The measurements were very challenging, since we needed to accurately measure displacements 100 times smaller than the size of the hydrogen atom," said Majid Minary, a postdoctoral fellow and the lead author of the study.

These results are exciting especially considering the recent demonstration of nanogenerators based on GaN nanowires, for powering of self-powered nanodevices.
Scientists in Cambridge have discovered a revolutionary new muscle builder...

Exclusive short video reveals the secret of how to learn any language in just 10 days!

Do not buy until you read this 4 week study on the results of using the E-Cigarette to quit smoking.

Illinois: Mom spills secret on how she makes $6795/mo part time.

view popular send feedback to editors
not rated yet

Please register or sign in to add a comment. Registration is free, and takes less than a minute. Read more

Sign in with

Email

Password

Sign In

Forgot your password? Click here to reset it.

Notify me via email of follow-up comments posted here sign in first

Ads by Google

Tecate Ultracapacitors - Buy Now In Stock Supercapacitors Cell Modules Battery Replacements - TecateGroup.com/PowerBurst

Sign up for Google Offers - Coming soon - Amazing deals on the best places to eat, shop and play. - www.Google.com/offers

Rank

1
2
3
4
5

not rated yet

Tags

gallium nitride, piezoelectricity, nanodevices, nanometers, semiconductor, piezoelectric properties, nanostructures

Related Stories

- Nanowires exhibit giant piezoelectricity Jan 26, 2011 | not rated yet | 0
- Research advances nanowire technology for large-scale applications Feb 26, 2009 | not rated yet | 0
- Nanowires get into the groove Aug 22, 2011 | not rated yet | 0
- Nanotechnology Breakthrough: Gallium Nitride Nanowires Grow Direction is Under Control Jul 28, 2004 | not rated yet | 0
- Nanowires offer opportunities for improved LEDs Jul 01, 2011 | not rated yet | 0

- Featured
- Last comments
- Popular
- Most shared
- Partners

- Leonardo da Vinci's tree rule may be explained by wind Jan 04, 2012 | 4.6 / 5 (17) | 12
- Physicists propose test for loop quantum gravity Jan 03, 2012 | 4.4 / 5 (24) | 56
- Social robotics: Beyond the uncanny valley Dec 29, 2011 | 4 / 5 (6) | 9
- Remembrance of things future: Long-term memory sets the stage for visual perception Dec 28, 2011 | 4.1 / 5 (8) | 4
- Swimming upstream: Flux flow reverses for lattice bosons in a magnetic field Dec 27, 2011 | 5 / 5 (12) | 10

more news

Relevant PhysicsForums posts

- Does a red-hot mirror reflect light the same way? 6 hours ago
- Gamma radiation photoelectric effect 10 hours ago
- Muons ? (Discussion) 13 hours ago
- Spherical rare-earth magnet equation
More news stories

Reading life’s building blocks: Researchers develop tools to speed DNA sequencing

Scientists are one step closer to a revolution in DNA sequencing, following the development in a Harvard lab of a tiny device designed to read the minute electrical changes produced when DNA strands are passed...

Narrowest conducting wires in silicon ever made show the same current capability as copper

The narrowest conducting wires in silicon ever made – just four atoms wide and one atom tall – have been shown to have the same electrical current carrying capability of copper, according to a new...

Graphene rips follow rules: Simulations show carbon sheets tear along energetically favorable lines

Research from Rice University and the University of California at Berkeley may give science and industry a new way to manipulate graphene, the wonder material expected to play a role in advanced electronic, mechanical and...

Light makes write for DNA information-storage device

Researchers have demonstrated a write-once-read-many-times information-storage device, made of DNA embedded with silver nanoparticles, that uses ultraviolet light to encode data.

Graphene's piezoelectric promise
Engineers predict that graphene can be coaxed into acting piezoelectric, merely by punching triangular holes into the material.

Apple patent sends password secrets to adapters

(PhysOrg.com) -- First-time computer users in the early days, pre-hacking security traumas, were confronted with a new life requirement: creating and remembering system passwords. Not too easy, users were ...

The next big step toward atom-specific dynamical chemistry

(PhysOrg.com) -- For Ali Belkacem of Berkeley Lab’s Chemical Sciences Division, “What is chemistry?” is not a rhetorical question.

Weakening Video Privacy Protection Act a dangerous attack on intellectual privacy

Most people would rather not have their video viewing habits easily available to the public — no need for co-workers to know about your love of reality TV.

Scientists identify lung cancer stem cells and new drug targets

Singapore scientists, headed by Dr. Bing Lim, Associate Director of Cancer Stem Cell Biology at the Genome Institute of Singapore (GIS), a research institute under the umbrella of the Agency for Science, Technology and Research ...

Fuel for fusion

Oak Ridge National Laboratory’s Fusion Pellet Fueling Lab has been at the center of design and testing of plasma fueling systems for tokamak research applications for decades. Since the mid-1970s, lab researchers ...

Neglected tropical diseases: A new handle on old problems

‘Neglected tropical diseases’ is a new name for old diseases that cause long-term suffering among the world’s poorest people. The Wellcome Trust and others have funded research into these diseases ...