Synthetic materials that behave like mollusk shells

03.02.2011 03:04

category: EDUCATION > Science

Synthetic materials that behave like mollusk shells

Nacre, commonly known as mother-of-pearl, is the iridescent material lining many mollusk shells. It is part of a two-layer armor system that protects the animal from predators. The brittle outer layer of the shell absorbs the initial impact, but is prone to cracking. To prevent these cracks from catastrophically propagating through the shell to the animal itself, the nacreous layer is surprisingly strong and tough, with outstanding crack arresting properties. Thus it acts as a lining to maintain the integrity of the shell in the event of cracking of the outer layer.

"What makes this natural material unique is that it is composed of relatively weak constituents," said Owen Loh, a graduate student at Northwestern University. At the microscale, brittle calcite tablets are stacked in a brick-and-mortar-like structure with thin layers of biopolymer lining the interfaces between tablets. This results in a material that well outperforms its individual constituents. For example, the toughness of nacre is orders of magnitude greater than that of the tablet material itself. It is at once strong and tough, a combination that is generally mutually exclusive in engineering materials.

As a result, nacre has been the object of significant interest within the materials community and serves as which numerous man-made composite materials are designed. This includes composites for light-weight arm structural elements in transportation and aerospace applications.

Nacre's outstanding performance has long been attributed to its brick-and-mortar microstructure. However, attributes of this hierarchical structure, which contribute to the toughness of nacre, have been the subject of research efforts to translate deformation mechanisms observed in nacre into man-made composite materials. This includes composites for light-weight arm structural elements in transportation and aerospace applications.

In a paper published online in the journal *Nature Communications*, Horacio Espinosa, the James N. and H. Robert Orton Jr. Professor in Manufacturing and Entrepreneurship at the McCormick School of Engineering and Applied Science at Northwestern, Loh and colleagues report the identification of specific characteristics of the material microstructure that enable its outstanding performance. By performing detailed fracture experiments within an atomic force microscope, Loh and colleagues were able to directly visualize and quantify the way the tablets slide relative to each other as the material deforms.

The group previously found that the tablets are not perfectly flat but instead have an inherent waviness in their surface. As a result, they tend to interlock as they slide relative to each other, spreading damage and dissipating energy. "We published these results before but it took atomic scale experiments to confirm our hypothesis of toughness in these biomaterials," Espinosa said.
The group then applied the findings to the design of artificial composites. "We took what we learned from nature and designed a scaled-up artificial composite material with an interlocking tablet structure," said Pablo Zavattieri, the paper and assistant professor of civil engineering at Purdue University. "By applying nacre's highly effective toughening mechanism to this material, we were able to achieve a remarkable improvement in energy dissipation."

The findings have important implications for future design of high-performance composite materials. "We find that our findings may hold a key to realizing the outstanding potential of nanocomposites," Espinosa said. "While carbon and other nanoscale reinforcements utilized in these materials have unprecedented properties, their performance may be translated to bulk composites. By implementing toughening mechanisms such as those we found in nature, we may be able to achieve this."

In addition to Espinosa, Loh and Zavattieri, the paper was co-authored by Allison Juster, Felix Latourte and David Bogan. Additionally, the research was supported in part by the Office of Naval Research (ONR).
Psychological effects of BP oil spill go beyond residents of impacted shorelines

GAINESVILLE, Fla. -- The psychological effects of the BP oil spill, the largest recorded environmental disaster in human history, extend far beyond people living areas of the Gulf of Mexico that were directly impacted by the spill, a new study finds.

... read full topic

Rewrite the textbooks

category: EDUCATION : Science

Rewrite the textbooks

Findings challenge conventional wisdom of how neurons operate

Neurons are considered basic functional concept is that synapses transmit electrical signals to the dendrites and cell body (input), a signals away (output). In one of many surprise findings, Northwestern University scientists have discovered operate in reverse: they can send signals to the cell body, too. It also turns out axons can talk to each other.

... read full topic

To increase physical activity, focus on how, not why

category: EDUCATION : Science

To increase physical activity, focus on how, not why

Behavior strategies, such as self-monitoring, motivate best, MU study finds

IMAGE: Vicki Conn is an associate dean for research and professor in the MU Sinclair School of Nursing. Click here for more information. COLUMBIA, people know that exercise is important to maintain and improve health; however, sedentary obesity rates are at all-time highs and have become major national issues.

... read full topic